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1 Scope of the Chapter

This chapter is concerned with two techniques – correlation analysis and regression modelling – both of
which are concerned with determining the inter-relationships among two or more variables.

Other chapters of the NAG Fortran Library which cover similar problems are Chapter E02 and
Chapter E02. Chapter E02 routines may be used to fit linear models by criteria other than least-squares,
and also for polynomial regression; Chapter E04 routines may be used to fit nonlinear models and linearly
constrained linear models.

2 Background to the Problems

2.1 Correlation

2.1.1 Aims of correlation analysis

Correlation analysis provides a single summary statistic – the correlation coefficient – describing the
strength of the association between two variables. The most common types of association which are
investigated by correlation analysis are linear relationships, and there are a number of forms of linear
correlation coefficients for use with different types of data.

2.1.2 Correlation coefficients

The (Pearson) product-moment correlation coefficients measure a linear relationship, while Kendall’s tau
and Spearman’s rank order correlation coefficients measure monotonicity only. All three coefficients range
from �1:0 to þ1:0. A coefficient of zero always indicates that no linear relationship exists; a þ1:0
coefficient implies a ‘perfect’ positive relationship (i.e., an increase in one variable is always associated
with a corresponding increase in the other variable); and a coefficient of �1:0 indicates a ‘perfect’ negative
relationship (i.e., an increase in one variable is always associated with a corresponding decrease in the
other variable).

Consider the bivariate scattergrams in Figure 1: (a) and (b) show strictly linear functions for which the
values of the product-moment correlation coefficient, and (since a linear function is also monotonic) both
Kendall’s tau and Spearman’s rank order coefficients, would be þ1:0 and �1:0 respectively. However,
though the relationships in figures (c) and (d) are respectively monotonically increasing and monotonically
decreasing, for which both Kendall’s and Spearman’s non-parametric coefficients would be þ1:0 (in (c))
and �1:0 (in (d)), the functions are nonlinear so that the product-moment coefficients would not take such
‘perfect’ extreme values. There is no obvious relationship between the variables in figure (e), so all three
coefficients would assume values close to zero, while in figure (f) though there is an obvious parabolic
relationship between the two variables, it would not be detected by any of the correlation coefficients
which would again take values near to zero; it is important therefore to examine scattergrams as well as the
correlation coefficients.

In order to decide which type of correlation is the most appropriate, it is necessary to appreciate the
different groups into which variables may be classified. Variables are generally divided into four types of
scales: the nominal scale, the ordinal scale, the interval scale, and the ratio scale. The nominal scale is
used only to categorise data; for each category a name, perhaps numeric, is assigned so that two different
categories will be identified by distinct names. The ordinal scale, as well as categorising the observations,
orders the categories. Each category is assigned a distinct identifying symbol, in such a way that the order
of the symbols corresponds to the order of the categories. (The most common system for ordinal variables
is to assign numerical identifiers to the categories, though if they have previously been assigned alphabetic
characters, these may be transformed to a numerical system by any convenient method which preserves the
ordering of the categories.) The interval scale not only categorises and orders the observations, but also
quantifies the comparison between categories; this necessitates a common unit of measurement and an
arbitrary zero-point. Finally, the ratio scale is similar to the interval scale, except that it has an absolute
(as opposed to arbitrary) zero-point.

For a more complete discussion of these four types of scales, and some examples, the user is referred to
Churchman and Ratoosh (1959) and Hays (1970).
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Figure 1

Product-moment correlation coefficients are used with variables which are interval (or ratio) scales; these
coefficients measure the amount of spread about the linear least-squares equation. For a product-moment
correlation coefficient, r, based on n pairs of observations, testing against the null hypothesis that there is
no correlation between the two variables, the statistic

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

1� r2

r

has a Student’s t-distribution with n� 2 degrees of freedom; its significance can be tested accordingly.

Ranked and ordinal scale data are generally analysed by non-parametric methods – usually either
Spearman’s or Kendall’s tau rank-order correlation coefficients, which, as their names suggest, operate
solely on the ranks, or relative orders, of the data values. Interval or ratio scale variables may also be
validly analysed by non-parametric methods, but such techniques are statistically less powerful than a
product-moment method. For a Spearman rank-order correlation coefficient, R, based on n pairs of
observations, testing against the null hypothesis that there is no correlation between the two variables, for
large samples the statistic
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R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

1�R2

r

has approximately a Student’s t-distribution with n� 2 degrees of freedom, and may be treated
accordingly. (This is similar to the product-moment correlation coefficient, r, see above.) Kendall’s tau
coefficient, based on n pairs of observations, has, for large samples, an approximately Normal distribution
with mean zero and standard deviation ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4nþ 10

9nðn� 1Þ

s

when tested against the null hypothesis that there is no correlation between the two variables; the
coefficient should therefore be divided by this standard deviation and tested against the standard Normal
distribution, N(0,1).

When the number of ordinal categories a variable takes is large, and the number of ties is relatively small,
Spearman’s rank-order correlation coefficients have advantages over Kendall’s tau; conversely, when the
number of categories is small, or there are a large number of ties, Kendall’s tau is usually preferred. Thus
when the ordinal scale is more or less continuous, Spearman’s rank-order coefficients are preferred,
whereas Kendall’s tau is used when the data is grouped into a smaller number of categories; both measures
do however include corrections for the occurrence of ties, and the basic concepts underlying the two
coefficients are quite similar. The absolute value of Kendall’s tau coefficient tends to be slightly smaller
than Spearman’s coefficient for the same set of data.

There is no authoritative dictum on the selection of correlation coefficients – particularly on the
advisability of using correlations with ordinal data. This is a matter of discretion for the user.

2.1.3 Partial Correlation

The correlation coefficients described above measure the association between two variables ignoring any
other variables in the system. Suppose there are three variables X; Y and Z as shown in the path diagram
below.

X

Z Y

The association between Y and Z is made up of the direct association between Y and Z and the
association caused by the path through X, that is the association of both Y and Z with the third variable
X. For example if Z and Y were cholesterol level and blood pressure and X were age since both blood
pressure and cholesterol level may increase with age the correlation between blood pressure and cholesterol
level eliminating the effect of age is required.

The correlation between two variables eliminating the effect of a third variable is know as the partial
correlation. If �zy, �zx and �xy represent the correlations between x, y and z then the partial correlation

between Z and Y given X is

�zy � �zx�xyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2zxÞð1� �2xyÞ

q :

The partial correlation is then estimated by using product-moment correlation coefficients.

In general, let a set of variables be partitioned into two groups Y and X with ny variables in Y and nx
variables in X and let the variance-covariance matrix of all ny þ nx variables be partitioned into

�xx �yx

�xy �yy

� �
:
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Then the variance-covariance of Y conditional on fixed values of the X variables is given by

�yjx ¼ �yy ��yx�
�1
xx�xy:

The partial correlation matrix is then computed by standardising �yjx.

2.1.4 Robust estimation of correlation coefficients

The product-moment correlation coefficient can be greatly affected by the presence of a few extreme
observations or outliers. There are robust estimation procedures which aim to decrease the effect of
extreme values.

Mathematically these methods can be described as follows. A robust estimate of the variance-covariance
matrix, C, can be written as

C ¼ �2ðATAÞ�1

where �2 is a correction factor to give an unbiased estimator if the data is Normal and A is a lower
triangular matrix. Let xi be the vector of values for the ith observation and let zi ¼ Aðxi � �Þ, � being a
robust estimate of location, then � and A are found as solutions to

1

n

Xn
i¼1

wðkzik2Þzi ¼ 0

and

1

n

Xn
i¼1

wðkzik2Þziz
T
i � vðkzik2ÞI ¼ 0;

where wðtÞ, uðtÞ and vðtÞ are functions such that they return a value of 1 for reasonable values of t and
decreasing values for large t. The correlation matrix can then be calculated from the variance-covariance
matrix. If w, u, and v returned 1 for all values then the product-moment correlation coefficient would be
calculated.

2.1.5 Missing values

When there are missing values in the data these may be handled in one of two ways. Firstly, if a case
contains a missing observation for any variable, then that case is omitted in its entirety from all
calculations; this may be termed casewise treatment of missing data. Secondly, if a case contains a
missing observation for any variable, then the case is omitted from only those calculations involving the
variable for which the value is missing; this may be called pairwise treatment of missing data. Pairwise
deletion of missing data has the advantage of using as much of the data as possible in the computation of
each coefficient. In extreme circumstances, however, it can have the disadvantage of producing
coefficients which are based on a different number of cases, and even on different selections of cases or
samples; furthermore, the correlation matrices formed in this way need not necessarily be positive-definite,
a requirement for a correlation matrix. Casewise deletion of missing data generally causes fewer cases to
be used in the calculation of the coefficients than does pairwise deletion. How great this difference is will
obviously depend on the distribution of the missing data, both among cases and among variables.

Pairwise treatment does therefore use more information from the sample, but should not be used without
careful consideration of the location of the missing observations in the data matrix, and the consequent
effect of processing the missing data in that fashion.

2.2 Regression

2.2.1 Aims of regression modelling

In regression analysis the relationship between one specific random variable, the dependent or response
variable, and one or more known variables, called the independent variables or covariates, is studied.
This relationship is represented by a mathematical model, or an equation, which associates the dependent
variable with the independent variables, together with a set of relevant assumptions. The independent
variables are related to the dependent variable by a function, called the regression function, which
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involves a set of unknown parameters. Values of the parameters which give the best fit for a given set of
data are obtained; these values are known as the estimates of the parameters.

The reasons for using a regression model are twofold. The first is to obtain a description of the
relationship between the variables as an indicator of possible causality. The second reason is to predict
the value of the dependent variable from a set of values of the independent variables. Accordingly, the
most usual statistical problems involved in regression analysis are:

(i) to obtain best estimates of the unknown regression parameters;

(ii) to test hypotheses about these parameters;

(iii) to determine the adequacy of the assumed model; and

(iv) to verify the set of relevant assumptions.

2.2.2 Linear regression models

When the regression model is linear in the parameters (but not necessarily in the independent variables),
then the regression model is said to be linear; otherwise the model is classified as nonlinear.

The most elementary form of regression model is the simple linear regression of the dependent variable,
Y , on a single independent variable, x, which takes the form

EðY Þ ¼ �0 þ �1x ð1Þ
where EðY Þ is the expected or average value of Y and �0 and �1 are the parameters whose values are to
be estimated, or, if the regression is required to pass through the origin (i.e., no constant term),

EðY Þ ¼ �1x ð2Þ
where �1 is the only unknown parameter.

An extension of this is multiple linear regression in which the dependent variable, Y , is regressed on the
p (p > 1) independent variables, x1; x2; . . . ; xp, which takes the form

EðY Þ ¼ �0 þ �1x1 þ �2x2 þ . . .þ �pxp ð3Þ

where �1; �2; . . . ; �p and �0 are the unknown parameters.

A special case of multiple linear regression is polynomial linear regression, in which the p independent

variables are in fact powers of the same single variable x (i.e., xj ¼ xj, for j ¼ 1; 2; . . . ; p).

In this case, the model defined by (3) becomes

EðY Þ ¼ �0 þ �1xþ �2x
2 þ . . .þ �px

p: ð4Þ

There are a great variety of nonlinear regression models; one of the most common is exponential
regression, in which the equation may take the form

EðY Þ ¼ aþ becx: ð5Þ
It should be noted that equation (4) represents a linear regression, since even though the equation is not
linear in the independent variable, x, it is linear in the parameters �0; �1; �2; . . . :; �p, whereas the

regression model of equation (5) is nonlinear, as it is nonlinear in the parameters (a, b and c).

2.2.3 Fitting the regression model – least-squares estimation

The method used to determine values for the parameters is, based on a given set of data, to minimize the
sums of squares of the differences between the observed values of the dependent variable and the values
predicted by the regression equation for that set of data – hence the term least-squares estimation. For
example, if a regression model of the type given by equation (3), namely

EðY Þ ¼ �0x0 þ �1x1 þ �2x2 þ . . .þ �pxp;

where x0 ¼ 1 for all observations, is to be fitted to the n data points
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ðx01; x11; x21; . . . ; xp1; y1Þ
ðx02; x12; x22; . . . ; xp2; y2Þ

..

.

ðx0n; x1n; x2n; . . . ; xpn; ynÞ

ð6Þ

such that

yi ¼ �0x0 þ �1x1i þ �2x2i þ . . .þ �pxpi þ ei; i ¼ 1; 2; . . . ; n

where ei are unknown independent random errors with EðeiÞ ¼ 0 and varðeiÞ ¼ �2, �2 being a constant,
then the method used is to calculate the estimates of the regression parameters �0; �1; �2; . . . ; �p by

minimizing

Xn
i¼1

e2i : ð7Þ

If the errors do not have constant variance, i.e.,

varðeiÞ ¼ �2i ¼
�2

wi

then weighted least-squares estimation is used in which

Xn
i¼1

wie
2
i

is minimized. For a more complete discussion of these least-squares regression methods, and details of the
mathematical techniques used, see Draper and Smith (1985) or Kendall and Stuart (1973).

2.2.4 Regression models and designed experiments

One application of regression models is in the analysis of experiments. In this case the model relates the
dependent variable to qualitative independent variables known as factors. Factors may take a number of
different values known as levels. For example, in an experiment in which one of four different treatments
is applied, the model will have one factor with four levels. Each level of the factor can be represented by
a dummy variable taking the values 0 or 1. So in the example there are four dummy variables xj, for
j ¼ 1; 2; 3; 4 such that:

xij ¼ 1 if the ith observation received the jth treatment

¼ 0 otherwise;

along with a variable for the mean x0:

xi0 ¼ 1 for all i:

If there were 7 observations the data would be:

Treatment Y x0 x1 x2 x3 x4
1 y1 1 1 0 0 0

2 y2 1 0 1 0 0

2 y3 1 0 1 0 0

3 y4 1 0 0 1 0

3 y5 1 0 0 1 0

4 y6 1 0 0 0 1

4 y7 1 0 0 0 1

Models which include factors are sometimes known as General Linear (Regression) Models. When
dummy variables are used it is common for the model not to be of full rank. In the case above, the model
would not be of full rank because

xi4 ¼ xi0 � xi1 � xi2 � xi3; i ¼ 1; 2; . . . ; 7:

This means that the effect of x4 cannot be distinguished from the combined effect of x0; x1; x2 and x3.
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This is known as aliasing. In this situation, the aliasing can be deduced from the experimental design and
as a result the model to be fitted; in such situations it is known as intrinsic aliasing. In the example above
no matter how many times each treatment is replicated (other than 0) the aliasing will still be present. If
the aliasing is due to a particular data set to which the model is to be fitted then it is known as extrinsic
aliasing. If in the example above observation 1 was missing then the x1 term would also be aliased. In
general intrinsic aliasing may be overcome by changing the model, e.g., remove x0 or x1 from the model,
or by introducing constraints on the parameters, e.g., �1 þ �2 þ �3 þ �4 ¼ 0.

If aliasing is present then there will no longer be a unique set of least-squares estimates for the parameters
of the model but the fitted values will still have a unique estimate. Some linear functions of the parameters
will also have unique estimates; these are known as estimable functions. In the example given above the
functions (�0 þ �1) and (�2 � �3) are both estimable.

2.2.5 Selecting the regression model

In many situations there are several possible independent variables, not all of which may be needed in the
model. In order to select a suitable set of independent variables, two basic approaches can be used.

(a) All possible regressions

In this case all the possible combinations of independent variables are fitted and the one considered
the best selected. To choose the best, two conflicting criteria have to be balanced. One is the fit of
the model as measured by the residual sum of squares. This will decrease as more variables are added
to the model. The second criterion is the desire to have a model with a small number of significant

terms. To aid in the choice of model, statistics such as R2, which gives the proportion of variation
explained by the model, and Cp, which tries to balance the size of the residual sum of squares against

the number of terms in the model, can be used.

(b) Stepwise model building

In stepwise model building the regression model is constructed recursively, adding or deleting the
independent variables one at a time. When the model is built up the procedure is known as forward
selection. The first step is to choose the single variable which is the best predictor. The second
independent variable to be added to the regression equation is that which provides the best fit in
conjunction with the first variable. Further variables are then added in this recursive fashion, adding
at each step the optimum variable, given the other variables already in the equation. Alternatively,
backward elimination can be used. This is when all variables are added and then the variables
dropped one at a time, the variable dropped being the one which has the least effect on the fit of the
model at that stage. There are also hybrid techniques which combine forward selection with backward
elimination.

2.2.6 Examining the fit of the model

Having fitted a model two questions need to be asked: first, ‘are all the terms in the model needed?’ and
second, ‘is there some systematic lack of fit?’. To answer the first question either confidence intervals can
be computed for the parameters or t-tests can be calculated to test hypotheses about the regression
parameters – for example, whether the value of the parameter, �k, is significantly different from a specified

value, bk (often zero). If the estimate of �k is �̂�k and its standard error is seð�̂�kÞ then the t-statistic is

�̂�k � bkffiffiffiffiffiffiffiffiffiffiffiffiffi
seð�̂�kÞ

q :

It should be noted that both the tests and the confidence intervals may not be independent. Alternatively
F -tests based on the residual sums of squares for different models can also be used to test the significance
of terms in the model. If model 1, giving residual sum of squares RSS1 with degrees of freedom �1, is a
sub-model of model 2, giving residual sum of squares RSS2 with degrees of freedom �2, i.e., all terms in
model 1 are also in model 2, then to test if the extra terms in model 2 are needed the F -statistic

F ¼ ðRSS1 �RSS2Þ=ð�1 � �2Þ
RSS2=�2
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may be used. These tests and confidence intervals require the additional assumption that the errors, ei, are
Normally distributed.

To check for systematic lack of fit the residuals, ri ¼ yi � ŷyi, where ŷyi is the fitted value, should be
examined. If the model is correct then they should be random with no discernable pattern. Due to the
way they are calculated the residuals do not have constant variance. Now the vector of fitted values can be
written as a linear combination of the vector of observations of the dependent variable, y, ŷy ¼ Hy. The

variance-covariance matrix of the residuals is then ðI �HÞ�2, I being the identity matrix. The diagonal
elements of H, hii, can therefore be used to standardize the residuals. The hii are a measure of the effect
of the ith observation on the fitted model and are sometimes known as leverages.

If the observations were taken serially the residuals may also be used to test the assumption of the
independence of the ei and hence the independence of the observations.

2.2.7 Computational methods

Let X be the n by p matrix of independent variables and y be the vector of values for the dependent

variable. To find the least-squares estimates of the vector of parameters, �̂�, the QR decomposition of X is
found, i.e.,

X ¼ QR�

where R� ¼ R
0

� �
, R being a p by p upper triangular matrix, and Q is a n by n orthogonal matrix. If R

is of full rank then �̂� is the solution to

R�̂� ¼ c1

where c ¼ QTy and c1 is the first p rows of c. If R is not of full rank, a solution is obtained by means of a
singular value decomposition (SVD) of R,

R ¼ Q�
D 0

0 0

� �
PT ;

where D is a k by k diagonal matrix with non-zero diagonal elements, k being the rank of R, and Q� and
P are p by p orthogonal matrices. This gives the solution

�̂� ¼ P1D
�1QT

�1c1;

P1 being the first k columns of P and Q�1 being the first k columns of Q�.

This will be only one of the possible solutions. Other estimates may be obtained by applying constraints
to the parameters. If weighted regression with a vector of weights w is required then both X and y are

premultiplied by w1=2.

The method described above will, in general, be more accurate than methods based on forming (XTX), (or
a scaled version), and then solving the equations

ðXTXÞ�̂� ¼ XTy:

2.2.8 Robust estimation

Least-squares regression can be greatly affected by a small number of unusual, atypical, or extreme
observations. To protect against such occurrences, robust regression methods have been developed. These
methods aim to give less weight to an observation which seems to be out of line with the rest of the data
given the model under consideration. That is to seek to bound the influence. For a discussion of influence
in regression, see Hampel et al. (1986) and Huber (1981).

There are two ways in which an observation for a regression model can be considered atypical. The values
of the independent variables for the observation may be atypical or the residual from the model may be
large.
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The first problem of atypical values of the independent variables can be tackled by calculating weights for
each observation which reflect how atypical it is, i.e., a strongly atypical observation would have a low
weight. There are several ways of finding suitable weights; some are discussed in Hampel et al. (1986).

The second problem is tackled by bounding the contribution of the individual ei to the criterion to be
minimized. When minimizing (7) a set of linear equations is formed, the solution of which gives the least-
squares estimates. The equations are

Xn
i¼1

eixij ¼ 0 j ¼ 0; 1; . . . ; k:

These equations are replaced by

Xn
i¼1

 ðei=�Þxij ¼ 0 j ¼ 0; 1; . . . ; k; ð8Þ

where �2 is the variance of the ei, and  is a suitable function which down weights large values of the
standardized residuals ei=�. There are several suggested forms for  , one of which is Huber’s function,

 ðtÞ ¼
�c; < c
t; jtj � c
c; t > c

8<
: ð9Þ

-c

c
t

ψ (t)

Figure 2

The solution to (8) gives the M-estimates of the regression coefficients. The weights can be included in
(8) to protect against both types of extreme value. The parameter � can be estimated by the median
absolute deviations of the residuals or as a solution to, in the unweighted case,

Xn
i¼1

�ðei=�̂�Þ ¼ ðn� kÞ�;

where � is a suitable function and � is a constant chosen to make the estimate unbiased. � is often chosen

to be  2=2 where  is given in (9). Another form of robust regression is to minimize the sum of absolute
deviations, i.e.,

Xn
i¼1

jeij:

For details of robust regression, see Hampel et al. (1986) and Huber (1981).

Robust regressions using least absolute deviations can be computed using routines in Chapter E02.

2.2.9 Generalized linear models

Generalized linear models are an extension of the general linear regression model discussed above. They
allow a wide range of models to be fitted. These included certain non-linear regression models, logistic
and probit regression models for binary data, and log-linear models for contingency tables. A generalized
linear model consists of three basic components:

(a) A suitable distribution for the dependent variable Y . The following distributions are common:

(i) Normal
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(ii) binomial

(iii) Poisson

(iv) gamma

In addition to the obvious uses of models with these distributions it should be noted that the Poisson
distribution can be used in the analysis of contingency tables while the gamma distribution can be
used to model variance components. The effect of the choice of the distribution is to define the
relationship between the expected value of Y , EðY Þ ¼ 	, and its variance and so a generalized linear
model with one of the above distributions may be used in a wider context when that relationship
holds.

(b) A linear model 
 ¼
P
�jxj, 
 is known as a linear predictor.

(c) A link function gð�Þ between the expected value of Y and the linear predictor, gð	Þ ¼ 
. The
following link functions are available:

For the binomial distribution �, observing y out of t:

(i) logistic link: 
 ¼ log 	
t�	

� �
;

(ii) probit link: 
 ¼ ��1 	
t

� 	
;

(iii) complementary log-log: 
 ¼ log � log 1� 	
t

� 	� 	
.

For the Normal, Poisson, and gamma distributions:

(i) exponent link: 
 ¼ 	a, for a constant a;

(ii) identity link: 
 ¼ 	;

(iii) log link: 
 ¼ log	;

(iv) square root link: 
 ¼ ffiffiffi
	

p
;

(v) reciprocal link: 
 ¼ 1
	.

For each distribution there is a canonical link. For the canonical link there exist sufficient statistics
for the parameters. The canonical links are:

(i) Normal – identity;

(ii) binomial – logistic;

(iii) Poisson – logarithmic;

(iv) gamma – reciprocal.

For the general linear regression model described above the three components are:

(i) Distribution – Normal;

(ii) Linear model –
P
�jxj;

(iii) Link – identity.

The model is fitted by maximum likelihood; this is equivalent to least-squares in the case of the Normal
distribution. The residual sums of squares used in regression models is generalized to the concept of
deviance. The deviance is the logarithm of the ratio of the likelihood of the model to the full model in
which 	̂	i ¼ yi, where 	̂	i is the estimated value of 	i. For the Normal distribution the deviance is the

residual sum of squares. Except for the case of the Normal distribution with the identity link, the �2 and
F -tests based on the deviance are only approximate; also the estimates of the parameters will only be
approximately Normally distributed. Thus only approximate z- or t-tests may be performed on the
parameter values and approximate confidence intervals computed.

The estimates are found by using an iterative weighted least-squares procedure. This is equivalent to the
Fisher scoring method in which the Hessian matrix used in the Newton–Raphson method is replaced by its
expected value. In the case of canonical links the Fisher scoring method and the Newton–Raphson method
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are identical. Starting values for the iterative procedure are obtained by replacing the 	i by yi in the
appropriate equations.

3 Recommendations on Choice and Use of Available Routines

Note: refer to the Users’ Note for your implementation to check that a routine is available.

3.1 Correlation

3.1.1 Product-moment correlation

Let SSx be the sum of squares of deviations from the mean, �xx, for the variable x for a sample of size n,
i.e.,

SSx ¼
Xn
i¼1

ðxi � �xxÞ2

and let SCxy be the cross-products of deviations from the means, �xx and �yy, for the variables x and y for a

sample of size n, i.e.,

SCxy ¼
Xn
i¼1

ðxi � �xxÞðyi � �yyÞ:

Then the sample covariance of x and y is

covðx; yÞ ¼
SCxy
ðn� 1Þ

and the product-moment correlation coefficient is

r ¼ covðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðxÞ varðyÞ

p ¼
SCxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSxSSy

p :

G02BUF computes the sample sums of squares and cross-products deviations from the means (optionally
weighted). G02BTF updates the sample sums of squares and cross-products and deviations from the
means by the addition/deletion of a (weighted) observation. G02BWF computes the product-moment
correlation coefficients from the sample sums of squares and cross-products of deviations from the means.
The three routines compute only the upper triangle of the correlation matrix which is stored in a one-
dimensional array in packed form. G02BXF computes both the (optionally weighted) covariance matrix
and the (optionally weighted) correlation matrix. These are returned in two-dimensional arrays. (Note that
G02BTF and G02BUF can be used to compute the sums of squares from zero.)

G02BGF can be used to calculate the correlation coefficients for a subset of variables in the data matrix.

3.1.2 Product-moment correlation with missing values

If there are missing values then G02BUF and G02BXF, as described above, will allow casewise deletion
by the user giving the observation zero weight (compared with unit weight for an otherwise unweighted
computation).

Other routines also handle missing values in the calculation of unweighted product-moment correlation
coefficients. Casewise exclusion of missing values is provided by G02BBF while pairwise omission of
missing values is carried out by G02BCF. These two routines calculate a correlation matrix for all the
variables in the data matrix; similar output but for only a selected subset of variables is provided by
routines G02BHF and G02BJF respectively. As well as providing the Pearson product-moment correlation
coefficients, these routines also calculate the means and standard deviations of the variables, and the matrix
of sums of squares and cross-products of deviations from the means. For all four routines the user is free
to select appropriate values for consideration as missing values, bearing in mind the nature of the data and
the possible range of valid values. The missing values for each variable may be either different or alike
and it is not necessary to specify missing values for all the variables.
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3.1.3 Non-parametric correlation

There are five routines which perform non-parametric correlations, each of which is capable of producing
both Spearman’s rank-order and Kendall’s tau correlation coefficients. The basic underlying concept of
both these methods is to replace each observation by its corresponding rank or order within the
observations on that variable, and the correlations are then calculated using these ranks.

It is obviously more convenient to order the observations and calculate the ranks for a particular variable
just once, and to store these ranks for subsequent use in calculating all coefficients involving that variable;
this does however require an amount of store of the same size as the original data matrix, which in some
cases might be excessive. Accordingly, some routines calculate the ranks only once, and replace the input
data matrix by the matrix of ranks, which are then also made available to the user on exit from the routine,
while others preserve the data matrix and calculate the ranks a number of times within the routine; the
ranks of the observations are not provided as output by routines which work in the latter way. The
routines which overwrite the data matrix with the ranks are intended for possible use in two ways: firstly, if
the data matrix is no longer required by the program once the correlation coefficients have been
determined, then it is of no consequence that this matrix is replaced by the ranks, and secondly, if the
original data is still required, the data can be copied into a second matrix, and this new matrix used in the
routine, so that even though this second matrix is replaced by the ranks, the original data matrix is still
accessible. If it is possible to arrange the program in such a way that the first technique can be used, then
efficiency of timing is achieved with no additional storage, whereas in the second case, it is necessary to
have a second matrix of the same size as the data matrix, which may not be acceptable in certain
circumstances; in this case it is necessary to reach a compromise between efficiency of time and of storage,
and this may well be dependent upon local conditions.

Routines G02BNF and G02BQF both calculate Kendall’s tau and/or Spearman’s rank-order correlation
coefficients taking no account of missing values; G02BNF does so by calculating the ranks of each
variable only once, and replacing the data matrix by the matrix of ranks, whereas G02BQF calculates the
ranks of each variable several times. Routines G02BPF and G02BRF provide the same output, but treat
missing values in a ‘casewise’ manner (see above); G02BPF calculates the ranks of each variable only
once, and overwrites the data matrix of ranks, while G02BRF determines the ranks of each variable several
times. For ‘pairwise’ omission of missing data (see above), the routine G02BSF provides Kendall and/or
Spearman coefficients.

Since G02BNF and G02BPF order the observations and calculate the ranks of each variable only once,
then if there are M variables involved, there are only M separate ‘ranking’ operations; this should be
contrasted with the method used by routines G02BQF and G02BRF which perform MðM � 1Þ=2þ 1
similar ranking operations. These ranking operations are by far the most time-consuming parts of these
non-parametric routines, so for a matrix of as few as five variables, the time taken by one of the slower
routines can be expected to be at least a factor of two slower than the corresponding efficient routine; as
the number of variables increases, so this relative efficiency factor increases. Only one routine, G02BSF, is
provided for pairwise missing values, and this routine carries out MðM � 1Þ separate rankings; since by
the very nature of the pairwise method it is necessary to treat each pair of variables separately and rank
them individually, it is impossible to reduce this number of operations, and so no alternative routine is
provided.

3.1.4 Partial correlation

G02BYF computes a matrix of partial correlation coefficients from the correlation coefficients or variance-
covariance matrix returned by G02BXF.

3.1.5 Robust correlation

G02HLF and G02HMF compute robust esimates of the variance-covariance matrix by solving the
equations

1

n

Xn
i¼1

wðkzik2Þzi ¼ 0

and
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1

n

Xn
i¼1

uðkzik2Þziz
T
i � vðkzik2ÞI ¼ 0;

as described in Section 2.1.3 for user-supplied functions w and u. Two options are available for v, either
vðtÞ ¼ 1 for all t or vðtÞ ¼ uðtÞ.
G02HMF requires only the function w and u to be supplied while G02HLF also requires their derivatives.
In general G02HLF will be considerably faster than G02HMF and should be used if derivatives are
available.

G02HKF computes a robust variance-covariance matrix for the following functions:

uðtÞ ¼ au=t
2 if t < a2u

uðtÞ ¼ 1 if a2u � t � b2u
uðtÞ ¼ bu=t

2 if t > b2u

and

wðtÞ ¼ 1 if t � cw
wðtÞ ¼ cw=t if t > cw

for constants au, bu and cw.

These functions solve a minimax space problem considered by Huber (1981). The values of au, bu and cw
are calculated from the fraction of gross errors; see Hampel et al. (1986) and Huber (1981).

To compute a correlation matrix from the variance-covariance matrix G02BWF may be used.

3.2 Regression

3.2.1 Simple linear regression

Four routines are provided for simple linear regressions: G02CAF and G02CCF perform the simple linear
regression with a constant term (equation (1) above), while G02CBF and G02CDF fit the simple linear
regression with no constant term (equation (2) above). Two of these routines, G02CCF and G02CDF, take
account of missing values, which the others do not. In these two routines, an observation is omitted if it
contains a missing value for either the dependent or the independent variable; this is equivalent to both the
casewise and pairwise methods, since both are identical when there are only two variables involved. Input
to these routines consists of the raw data, and output includes the coefficients, their standard errors and t-
values for testing the significance of the coefficients; the F -value for testing the overall significance of the
regression is also given.

3.2.2 Multiple linear regression – general linear model

G02DAF fits a general linear regression model using the QR method and an SVD if the model is not of
full rank. The results returned include: residual sum of squares, parameter estimates, their
standard errors and variance-covariance matrix, residuals and leverages. There are also several
routines to modify the model fitted by G02DAF and to aid in the interpretation of the model.

G02DCF adds or deletes an observation from the model.

G02DDF computes the parameter estimates, and their standard errors and variance-covariance matrix for a
model that is modified by G02DCF, G02DEF or G02DFF.

G02DEF adds a new variable to a model.

G02DFF drops a variable from a model.

G02DGF fits the regression to a new dependent variable, i.e., keeping the same independent variables.

G02DKF calculates the estimates of the parameters for a given set of constraints, (e.g., parameters for the
levels of a factor sum to zero) for a model which is not of full rank and the SVD has been used.

G02DNF calculates the estimate of an estimable function and its standard error.
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Note: G02DEF also allows the user to initialise a model building process and then to build up the model
by adding variables one at a time.

If the user wishes to use methods based on forming the cross-products/correlation matrix (i.e., (XTX)
matrix) rather than the recommended use of G02DAF then the following routines should be used.

For regression through the origin (i.e., no constant) G02CHF preceded by:

G02BDF (no missing values, all variables)

G02BKF (no missing values, subset of variables)

G02BEF (casewise missing values, all variables)

G02BLF (casewise missing values, subset of variables)

G02BFF* (pairwise missing values, all variables)

G02BMF* (pairwise missing values, subset of variables)

For regression with intercept (i.e., with constant) G02CGF preceded by:

G02BAF (no missing values, all variables)

G02BGF (no missing values, subset of variables)

G02BBF (casewise missing values, all variables)

G02BHF (casewise missing values, subset of variables)

G02BCF* (pairwise missing values, all variables)

G02BJF* (pairwise missing values, subset of variables)

Note that the four routines using pairwise deletion of missing value (marked with �) should be used with
great caution as the use of this method can lead to misleading results, particularly if a significant
proportion of values are missing.

Both G02CHF and G02CGF require that the correlations/sums of squares involving the dependent variable
must appear as the last row/column. Because the layout of the variables in a user’s data array may not be
arranged in this way, two routines, G02CEF and G02CFF, are provided for re-arranging the rows and
columns of vectors and matrices. G02CFF simply re-orders the rows and columns while G02CEF forms
smaller vectors and matrices from larger ones.

Output from G02CGF and G02CHF consists of the coefficients, their standard errors, R2-values, t and F
statistics.

3.2.3 Selecting regression models

To aid the selection of a regression model the following routines are available.

G02EAF computes the residual sums of squares for all possible regressions for a given set of dependent
variables. The routine allows some variables to be forced into all regressions.

G02ECF computes the values of R2 and Cp from the residual sums of squares as provided by G02EAF.

G02EEF enables the user to fit a model by forward selection. The user may call G02EEF a number of
times. At each call the routine will calculate the changes in the residual sum of squares from
adding each of the variables not already included in the model, select the variable which gives
the largest change and then if the change in residual sum of squares meets the given criterion
will add it to the model.

3.2.4 Residuals

G02FAF computes the following standardized residuals and measures of influence for the residuals and
leverages produced by G02DAF:

(i) Internally studentized residual;

(ii) Externally studentized residual;
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(iii) Cook’s D statistic;

(iv) Atkinson’s T statistic.

G02FCF computes the Durbin–Watson test statistic and bounds for its significance to test for serial
correlation in the errors, ei.

3.2.5 Robust regression

For robust regression using M-estimates instead of least-squares the routine G02HAF will generally be
suitable. G02HAF provides a choice of four  -functions (Huber’s, Hampel’s, Andrew’s and Tukey’s) plus
two different weighting methods and the option not to use weights. If other weights or different  -
functions are needed the routine G02HDF may be used. G02HDF requires the user to supply weights, if
required, and also routines to calculate the  -function and, optionally, the �-function. G02HBF can be
used in calculating suitable weights. The routine G02HFF can be used after a call to G02HDF in order to
calculate the variance-covariance estimate of the estimated regression coefficients.

For robust regression, using least absolute deviation, E02GAF can be used.

3.2.6 Generalized linear models

There are four routines for fitting generalized linear models. The output includes: the deviance, parameter
estimates and their standard errors, fitted values, residuals and leverages. The routines are:

G02GAF – Normal distribution

G02GBF – binomial distribution

G02GCF – Poisson distribution

G02GDF – gamma distribution

While G02GAF can be used to fit linear regression models (i.e., by using an identity link) this is not
recomended as G02DAF will fit these models more efficiently. G02GCF can be used to fit log-linear
models to contingency tables.

In addition to the routines to fit the models there are two routines to aid the interpretation of the model if a
model which is not of full rank has been fitted, i.e., aliasing is present.

G02GKF computes parameter estimates for a set of constraints, (e.g., sum of effects for a factor is zero),
from the SVD solution provided by the fitting routine.

G02GNF calculates an estimate of an estimable function along with its standard error.

3.2.7 Polynomial regression and non-linear regression

No routines are currently provided in this chapter for polynomial regression. Users wishing to perform
polynomial regressions do however have three alternatives: they can use the multiple linear regression
routines, G02DAF, with a set of independent variables which are in fact simply the same single variable
raised to different powers, or they can use the routine G04EAF to compute orthogonal polynomials which
can then be used with G02DAF, or they can use the routines in Chapter E02 (Curve and Surface Fitting)
which fit polynomials to sets of data points using the techniques of orthogonal polynomials. This latter
course is to be preferred, since it is more efficient and liable to be more accurate, but in some cases more
statistical information may be required than is provided by those routines, and it may be necessary to use
the routines of this chapter.

More general nonlinear regression models may be fitted using the optimization routines in Chapter E04,
which contains routines to minimize the function

Xn
i¼1

e2i

where the regression parameters are the variables of the minimization problem.
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4 Index

Note: only a selection of the routines available in this chapter appears on the following list. This selection
should cover most applications and includes the recomended routines.

Product-moment correlation:
unweighted/weighted correlation and covariance matrix ........................................................... G02BXF
unweighted/weighted sum of squares and cross-products ......................................................... G02BUF
update sum of squares and cross-products matrix ..................................................................... G02BTF
correlation matrix from sum of squares and cross-products matrix .......................................... G02BWF
unweighted on a subset of variables ........................................................................................... G02BGF
unweighted with missing values ................................................................................................. G02BBF
unweighted on a subset of variables with missing values ........................................................ G02BHF

Non-parametric correlation:
no missing observations, overwriting input data ........................................................................ G02BNF
missing observations, overwriting input data ............................................................................. G02BPF

Partial correlation:
From correlation/variance-covariance matrix ................................................................................ G02BYF

Robust correlation:
Huber’s method ............................................................................................................................ G02HKF
user-supplied weight function plus derivatives ........................................................................... G02HLF
user-supplied weight function only ............................................................................................. G02HMF

Simple linear regression:
simple linear regression ............................................................................................................... G02CAF
simple linear regression, no intercept ......................................................................................... G02CBF
simple linear regression with missing values ............................................................................. G02CCF
simple linear regression, no intercept with missing values ....................................................... G02CDF

Multiple linear regression/General linear model:
general linear regression model ................................................................................................... G02DAF
add/delete observation from model ............................................................................................. G02DCF
add independent variable to model ............................................................................................. G02DEF
delete independent variable from model ..................................................................................... G02DFF
regression parameters from updated model ................................................................................ G02DDF
regression for new dependent variable ....................................................................................... G02DGF
transform model parameters ......................................................................................................... G02DKF
computes estimable function ........................................................................................................ G02DNF

Selecting regression model:
all possible regressions ................................................................................................................ G02EAF

R2 and Cp statistics ..................................................................................................................... G02ECF

forward selection .......................................................................................................................... G02EEF
Residuals:

standardized residuals and influence statistics ............................................................................ G02FAF
Durbin–Watson test ...................................................................................................................... G02FCF

Robust regression:
standard M-estimates ................................................................................................................... G02HAF
user supplies weight functions .................................................................................................... G02HDF

Generalized linear models:
Normal errors ............................................................................................................................... G02GAF
binomial errors ............................................................................................................................. G02GBF
Poisson errors ............................................................................................................................... G02GCF
gamma errors ................................................................................................................................ G02GDF
transform model parameters ......................................................................................................... G02GKF
computes estimable function ........................................................................................................ G02GNF
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5 Routines Withdrawn or Scheduled for Withdrawal

The following routines have been withdrawn. Advice on replacing calls to those withdrawn since Mark 13
is given in the document ‘Advice on Replacement Calls for Withdrawn/Superseded Routines’.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

G02CJF 16 G02DAF and G02DGF
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